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Abstract: The support vector machines (SVMs) method is proposed because it can reflect the sequence-
coupling effect for a tetrapeptide in not only a β-turn or non-β-turn, but also in different types of β-turn. The
results of the model for 6022 tetrapeptides indicate that the rates of self-consistency for β-turn types I, I′, II,
II′, VI and VIII and non-β-turns are 99.92%, 96.8%, 98.02%, 97.75%, 100%, 97.19% and 100%, respectively.
Using these training data, the rate of correct prediction by the SVMs for a given protein: rubredoxin (54
residues, 51 tetrapeptides) which includes 12 β-turn type I tetrapeptides, 1 β-turn type II tetrapeptide and
38 non-β-turns reached 82.4%. The high quality of prediction of the SVMs implies that the formation of
different β-turn types or non-β-turns is considerably correlated with the sequence of a tetrapeptide. The
SVMs can save CPU time and avoid the overfitting problem compared with the neural network method.
Copyright  2002 European Peptide Society and John Wiley & Sons, Ltd.
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INTRODUCTION

In protein structure, turns are formed wherever
polypeptide chains reverse their overall direction.
They not only play an important role in informa-
tion of the three dimensional structure but are also
involved in functional activities such as molecular
recognition. Of the different turns, β-turns, which
are formed by four residues, are the most common
in protein structure, comprising on average 25%
of the residues [1,2]. Therefore, the prediction of
β-turns is an important basis for the prediction
of the secondary structure and function of pro-
teins. Several methods based on different algorithms
for predicting β-turns have been proposed in the
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past few years [3–9]. Chou and Blinn [10] took the
residue-coupled effect into account and proposed
a new residue-coupled model for the prediction of
β-turns in proteins. According to Chou’s research,
the prediction quality is significantly improved in
comparison with the prediction results reported pre-
viously. Cai et al. [11] have used self-organization
neural networks to predict β-turn types in pro-
teins by using Chou’s data. But the neural network
method uses too much CPU time and always gives
overfitted results. In this paper, we applied Vap-
nik’s support vector machine [12] for this problem,
to try to save CPU time and to avoid the overfitting
problem, and good results were obtained.

SUPPORT VECTOR MACHINE

The support vector machine (SVM) is one type
of learning machine based on statistical learning
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theory. The basic idea of applying SVM to pattern
classification can be stated briefly as follows. First,
the input vectors are mapped into one feature
space (possible with a higher dimension), either
linearly or non-linearly, which is relevant to the
selection of the kernel function. Then, within the
feature space from the first step, an optimized
linear division is found i.e. construct a hyperplane
which separates two classes (this can be extended
to multi-class). SVM training always seeks a global
optimized solution and avoids overfitting, so it has
the ability to deal with a large number of features.
A complete description of the theory of SVMs for
pattern recognition is in Vapnik’s book [13].

SVMs have been used in a range of problems
including drug design [14], image recognition and
text classification [15].

In this paper, Vapnik’s support vector machine
[12] was applied for predicting β-turn types in
proteins. The SVMlight was downloaded, which is
an implementation (in C Language) of SVM for the
problem of pattern recognition. The optimization
algorithm used in SVMlight has been described by
Joachims [16,17]. The code has been used in text
classification and image recognition [15].

Suppose we are given a set of samples, i.e. a series
of input vectors

Xi ∈ Rd(i = 1, . . . , N)

with corresponding labels yi ∈ {+1,−1}(i = 1, . . . , N).
Where −1 and +1 are used to stand respectively

for the two classes. The goal here is to construct
a one binary classifier or to derive a one decision
function from the available samples, which has a
small probability of misclassifying a future sample.
Both the basic linear separable case and the most
useful linear non-separable case for the most real
life problems are considered here.

THE LINEAR SEPARABLE CASE

In this case, a separating hyperplane exists whose
function is �W • �X + b = 0, which implies

yi( �W • �xi + b) ≥ 1, i = 1, . . . , N

By minimizing 1
2

∥∥∥ �W
∥∥∥2

subject to this constraint,
the SVM approach tries to find a unique separating
hyperplane. Here

∥∥ �w∥∥2
is the Euclidean norm

of �w, which maximizes the distance between

the hyperplane (optimal separating hyperplane or
OSH [18]) and the nearest data points of each
class. The classifier is called the largest margin
classifier. By introducing Lagrange multipliers αi ,
using the Karush-Kuhn-Tucker (KKT) conditions
and the Wolfe dual theorem of optimization theory,
the SVM training procedure amounts to solving the
following convex QP problem

Max :
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiαj · yiyj · �Xi • �Xj

subject to the following two conditions

αi ≥ 0
N∑

i=1

αiyi = 0, i = 1, . . . , N .

The solution is a unique globally optimized result
that can be shown to have the following expansion

�W =
N∑

i=1

yiαi · �xi .

Only if the corresponding αi > 0, then these �xi are
called support vectors

When a SVM is trained, the decision function can
be written as

f (�x) = sgn

(
N∑

i=1

yiαi · �x • �xi + b

)

Where sgn() in the above formula is the given sign
function.

THE LINEAR NON-SEPARABLE CASE

Two important techniques needed for this case are
given respectively as:

(i) ‘Soft margin’ technique.

In order to allow for training errors, Cortes and
Vapnik [18] introduced slack variables

ξi > 0, i = 1, . . . , N

and the relaxed separation constraint is given as

yi(w • �xi + b) ≥ 1 − ξi , (i = 1, . . . , N)
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and the OSH can be found by minimizing

1
2

|w|2 + C
N∑

i=1

ξi

instead of 1
2 |w|2 for the above two constraints in the

previous section.
where C is a regularization parameter used to
decide a trade-off between the training error and
the margin.

(ii) ‘Kernel substitution’ technique.

SVM performs a non-linear mapping of the input
vector x from the input space Rd into a higher
dimensional Hilbert space, where the mapping
is determined by the kernel function. Then as
in case (i), it finds the OSH in the space H
corresponding to a non-linear boundary in the input
space.

Two typical kernel functions are listed below

K(�xi, �xj) = (�xi • �xj + 1)
d

K(�xi, �xj) = exp(−r
∣∣�xi − �xj

∣∣2).
Where the first one is called the polynomial kernel
function of degree d which will eventually revert to
the linear function when d = 1, the latter is called
the RBF (radial basic function) kernel.

Finally, for the selected kernel function, the
learning task amounts to solving the following QP
problem,

Max :
N∑

i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiαj · yiyj · K( �Xi • �Xj)

subject to

0 ≤ ai ≤ C
N∑

i=1

αiyi = 0, i = 1, . . . , N

and the form of the decision function is

f (�x) = sgn

(
N∑

i=1

yiαi · K(�x, �xi) + b

)
.

For a given data set, only the kernel function and the
regularity parameter C must be selected to specify
one SVM.

THE TRAINING AND PREDICTION OF β-TURN
TYPES

Following the same procedures and rationale [10],
the β-turn types classified by Hutchinson and
Thornton [9] were clustered into seven categories,
i.e. type I β-turn, type I′ β-turn, type II β-turn,
type II′ β-turn, type VI β-turn, type VIII β-turn
and non-β-turn. S1 was used to represent the
dataset consisting of type I β-turn tetrapeptides,
S1′ type I′ β-turn tetrapeptides, S2 type II′ β-
turn tetrapeptides, S2′ type II′ β-turn tetrapeptides,
S6 type VI β-turn tetrapeptides, S8 type VIII β-
turn tetrapeptides and S- non β-turn tetrapep-
tides.

Since β-turn structure in a protein is a tetrapep-
tide that involves four consecutive residues i, i + 1,
i + 2, and i + 3, its sequence can be generally
expressed by Ri Ri + 1Ri + 2Ri + 3, where Ri rep-
resents the amino acid at the protein sequence
position i (or subsite 1 of the tetrapeptide), Ri + 1
represents the amino acid at the protein sequence
position i + 1 (or subsite 2 of the tetrapeptide),
and so forth. For the current research, a tetrapep-
tide can be classified into one of the seven cate-
gories, as denoted by seven different sets: S1, S1′,
S2, S2′, S6, S8 and S- as defined by Chou and
Blinn [10].

Given a tetrapeptide, its assignment to which
category sets(S1, S1′, S2, S2′, S6, S8 and S-) can
be formulated by a 4-D (dimension) vector.

In this research, 20 bases of tetrapeptides are
coded as 20-D vectors composed of only 0 and
1 (A = 100000 . . . 000, C = 010000 . . . 000, . . . . . . .Y =
000000 . . . 001), which are taken as the input
of SVMs.

The computations were carried out on a Silicon
Graphics IRIS Indigo work station (Elan 4000).

There are 6028 β-turn tetrapeptides of β-turn
types I(1227), I′(125), II(405), II′(89), VI(55), VIII(320)
and non-β-turns(3807) in the training database.
In this research, for the SVMs, the width of
the Gaussian RBFs [13] is selected as that which
minimized an estimate of the VC-dimension [13].
The parameter C that controls the error-margin
tradeoff is set at 100. After being trained, the
hyperplane output by the SVMs was obtained.
This indicates that the trained model, i.e. hyper-
plane output which includes the important infor-
mation, has the function of identifying the β-
turns.

In this research, as an example, β-turns and
their types were predict from the entire primary
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sequence of rubredoxin (54 residues, 51 tetrapep-
tides) including 12 β-turn types I tetrapeptides,
1 β-turn types II tetrapeptides and 38 non-β-
turns. As a result, the prediction rate was quite
high.

Because the training dataset and the extensive
details for each classification (number of support
vectors, the list of support vectors) are quite long,
they are not detailed in this paper, but they are
available upon request.

RESULTS AND DISCUSSION

In this research, an examination for self-consistency
of the SVMs method was tested. The rates of
correct prediction for the seven classes reached
99.92%(types I), 96.8% (types I′), 98.02%(type II),
97.75% (type II′), 100%(type VI), 97.19%(type VIII)
and 100% (non-β-turns). This indicates that after
being trained, the hyperplanes output of the SVMs
grasped the complicated relationship between the
tetrapeptides and β-turns, and it can predict
the unknown tetrapeptides. The SVMs only used
about 20 min of CPU time for the whole training
procedure.

In order to make a further test on the established
model, we experimented on rubredoxin (54 residues)
whose primary sequence is given by

MKKYTCTVCGYIYDPEDGDPDDGVNPGTD

FKDIPDDWVCPLCGVGKDEFEEVEE

Along with the sequence, 54 − 4 + 1 = 51 tetra-
peptides were automatically extracted in succes-
sion, and predicted by the SVMs model. The cor-
rect prediction rate of the β-turns in rubredoxin
and their types achieved 49/51 = 96.1%. Compared
with the results of the previous methods, such
as 42/81 = 82.4% [10] and 46/51 = 90.2% [11], the
results reported indicated a significant improve-
ment.

In this research, on comparison with the neu-
ral network method, the following points can be
made:

(1) For the self-consistency test, SVMs method only
used about 20 min of CPU time, while the neural
network method used about 25 h. This indicates
that SVMs can save much CPU time.

(2) The rate of correct prediction (self-consistency)
of the neural network method reached 100% [11]

for each class, which is better than the results of
SVMs (see above), but the rate for prediction of
the neural network reached 90.2% [11], which
is worse than the SVMs (rate = 96.1%). This
indicates that the SVMs avoids the overfitting
problem.

CONCLUSION

The results using the SVMs research indicate that
the formation of different β-turn types or non-β-
turns is considerably correlated with the sequence
of a tetrapeptide, fully consistent with the ear-
lier report using a different approach [10,11] and
we gained a significant improvement by using
SVMs.
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